Computer Engineering

Assistant construction of enterprise model based on active learning

Expand
  • Knowledge Engineering Research Center, Shenyang Aerospace University, Shenyang 110136

Received date: 2013-08-29

Abstract

Due to the broad application of the internet, we are suffering from the problem of information overloading.To solve this problem, we recommend to users some suggestions through recommender system.User model is an important part of recommender system, which realizes the personalized expression for users.In this paper, by using the data mining method, the enterprise model is made to express the enterprises of manufacturing industry through the feature words and the relations among the feature words which are mined from the texts related to the enterprises′ products.The enterprise model is used to express the users′ needs and provides data foundation for the recommender system.

Cite this article

TIAN Zhi-long, ZHANG Gui-ping, WANG Pei-yan . Assistant construction of enterprise model based on active learning[J]. Journal of Shenyang Aerospace University, 2013 , 30(5) : 73 -79 . DOI: 10.3969/j.issn.2095-1248.2013.05.015

References

[1]余力, 刘鲁, 李雪峰.用户多兴趣下的个性化推荐算法研究[J].计算机集成制造系统, 2004, 10(12):1610-1616.
[2]Michael D.Ekstrand, Joseph A.Konstan, John T.Riedl.Collaborative filtering recommender systems[J].Foundations and Trends in Human-Computer Interaction, 2011, 4(2):81-173.
[3]Greg Linden, Brent Smith, Jeremy York.Recommendations item-to-item collaborative filtering[C].IEEE, 2003, 76-80.
[4]Manos Papagelis, Dimitris Plexousakis.Qualitative analysis of user-based and item-based prediction algorithms for recommendation agents[C].Engineering Applications of Artificial Intelligence, 2005, I8:781-789.
[5]Michael J.Pazzani1, Daniel Billsus.Content-based recommendation systems[C].Springer-Verlag Berlin Heidelberg, 2007:325-341.
[6]Marko Balabanovic, Yoav Shoham.Content-based collaborative filtering recommendation[C].Communications of the ACM, 1997, 40(3):66-72.
[7]Rakesh Agrawal, Tomasz Imielinski.Mining association rules between sets of items in large databases[C].ACM, 1993:1-10.
[8]Nick Craswell, Martin Szummer.Random walks on the click graph[C].SIGIR, 2007:1-6.
[9]吴丽花, 刘鲁.个性化推荐系统用户建模技术综述[J].情报学报, 2006, 25(1):55-66.
[10]David Vickrey, Oscar Kipersztok, Daphne Koller.An active learning approach to finding related terms[C].ACM, 2010:1-6.
[11]张晓莹, 张桂平, 王裴岩.领域本体构建中关系辅助判断技术研究[J].中国计算语言学研究前沿进展, 2011:276-282.
[12]孙浩.基于主动学习的文本过滤系统的研究与应用[D].北京:北京邮电大学, 2011:12-26.
[13]葛世伦.企业信息模型研究[J].华东船舶工业学报(自然科学版), 2001, 15(3):73-79.
[14]张桂平, 尹宝生.知识管理在军工企业中的应用[J].沈阳航空航天大学学报, 2010, 27(4):47-49.
[15]白宇, 王裴岩, 蔡东风.专利检索技术[J].沈阳航空航天大学学报, 2010, 27(4):50-53.
[16]刘建国, 周涛, 郭强, 等.个性化推荐系统评价方法综述[J].复杂系统与复杂性科学, 2009, 06(3):1-10.
Outlines

/