Journal of Shenyang Aerospace University >
Engine performance evaluation method based on the flow characteristics of high-pressure turbine guide vane
Received date: 2024-02-02
Online published: 2024-09-10
In engine performance analysis,the ratio of the cooling air flow of high-pressure turbine guide vane to compressor inlet flow is a fixed value.However,the actual bleed air flow of the turbine is affected by some factors,such as the pressure difference between the inlet and outlet of the cooling air flow path,flow area and flow resistance,resulting in deviations between the current simulation accuracy and actual performance of the engine.To further improve the simulation accuracy of engine performance,a modeling method based on the flow characteristics of high-pressure turbine guide vane was proposed.The computational model of the core engine performance was improved based on this method,and the performance parameters of one core engine were calculated with this model.The numerical results show that,for this core engine the actual cooling air flow of turbines decreases after considering the flow characteristics of high-pressure turbine guide vane,and the cooling air flow is more sensitive to the change of the total pressure recovery coefficient of the cooling air flow path.In the performance calculation of the core engine,after using the cooling air flow correction of high-pressure turbine guide vane,the total temperature at the outlet of the combustion chamber decreases by 1% to 2%,the temperature ratio of the core engine increases by 0.2% to 0.45%,the unit cycle power increases by 0.24% to 0.48%,and the pressure ratio of the core engine and the fuel consumption rate per unit cycle power change relatively little.
Yujia YAN , Ruijun LI , Jinhui CUI . Engine performance evaluation method based on the flow characteristics of high-pressure turbine guide vane[J]. Journal of Shenyang Aerospace University, 2024 , 41(4) : 25 -31 . DOI: 10.3969/j.issn.2095-1248.2024.04.003
1 |
唐耿林.航空发动机性能监视参数选择的研究[J].推进技术,1998,19(2):38-42,53.
|
2 |
|
3 |
鲁峰,黄金泉.基于ESVR信息融合的航空发动机故障诊断研究[J].应用基础与工程科学学报,2010,18(6):982-989.
|
4 |
骆广琦.航空燃气涡轮发动机数值仿真[M].北京:国防工业出版社,2007:49-81.
|
5 |
|
6 |
李家瑞.航空发动机建模技术研究[D].南京:南京航空航天大学,2005.
|
7 |
张立超,何建元,彭涛,等.燃气轮机空气系统计算方法研究及验证[J].舰船科学技术,2011,33(11):71-75.
|
8 |
梁津华,赵维维,邹咪,等.基于伴随法的空气系统引气管减阻优化设计[J].燃气涡轮试验与研究,2022,35(6):39-44.
|
9 |
张津,洪杰,陈光.现代航空发动机技术与发展[M].北京:北京航空航天大学出版社,2006:24-25.
|
10 |
|
11 |
|
12 |
|
13 |
赵运生,胡骏,屠宝锋,等.功率提取与附加引气对涡扇发动机影响仿真[J].航空计算技术,2012,42(6):34-36.
|
14 |
孙滨.发动机引气对性能参数的影响[J].科协论坛(下半月),2012,27(11):74-75.
|
15 |
蒋爱武,史军勇,张百灵.引气系数变化对涡扇发动机动态性能影响的数值模拟[J].空军工程大学学报(自然科学版),2007,8(3):13-15.
|
16 |
胡秋晨,陈玉春,贾琳渊,等.引气冷却模型对涡轴发动机总体性能的影响研究[J].航空工程进展,2014,5(1):109-115.
|
17 |
刘传凯,姜宏超,李艳茹,等.航空发动机性能与二次空气系统的耦合仿真模型[J].航空动力学报,2017,32(7):1623-1630.
|
18 |
杨学森,程显达,王天赤,等.燃机总体性能与二次空气系统耦合的过渡态仿真[J].航空动力学报,2023,38(11):2618-2628.
|
19 |
常少琢.航空发动机性能与空气系统联合仿真方法研究[J].机械工程师,2023(11):37-39.
|
/
〈 |
|
〉 |