对某型航空发动机滑油光谱检测得到的数据进行分析, 从各个元素间的横向联系为出发点, 运用灰色关联度分析的方法对数据进行处理。通过各元素间灰色关联度的变化判断航空发动机的磨损状态, 判断的结果与实际磨损状态一致。本文拓宽了灰色关联度分析的应用领域, 运用该方法可以更加全面地分析航空发动机工作状态。
This paper analyzes the data obtained from inspecting oil spectrum of some aero-engine, and uses the method of grey correlative degree analysis to process the data from the horizontal relations among various elements as the starting point.Aero-engine wear condition is judged by the grey correlative changes, whose results are consistent with the actual wear state.This paper widens the application field of grey correlation degree analysis, through which the working state of aero-engine can be analyzed more comprehensively.
[1]左洪福.发动机磨损状态检测与故障诊断技术[M].北京:航空工业出版社, 1996.
[2]陈果.航空器检测与诊断技术导论[M].中国民航出版社, 2007.
[3]胡金海.航空发动机性能监控与故障诊断研究[D].西安:空军工程大学工程学院, 2003.
[4]高经纬, 张培林.油液光谱分析比例模型的建立[J].内燃机工程, 2004, 25(6):34-37.
[5]任国全, 张培林.装备油液智能监控原理[M].北京:国防工业出版社, 2006.
[6]刘思峰, 谢乃明.灰色理论及其应用[M].北京:科学出版社, 2008.
[7]曹明霞.灰色关联分析模型及其应用研究[D].南京:航空航天大学, 2007.
[8]穆锐, 张家秦.基于灰色关联分析的层次综合评价[J].系统理论与实践, 2008, 28(10):125-130.
[9]吕伯平, 陈明华.航空油液检测技术[M].北京:航空工业出版社, 2006.
[10]Chan J W K, Tong T K L.Multi-criteria material selections and end-of-life product strategy:grey relational analysis approach[J].Materials & Design, 2007, 28(5):1539-1546.