建立了某涡轮盘片结构的有限元模型, 通过对其进行热分析获得了该结构的稳态温度场。然后分别分析了非旋转状态与旋转状态下稳态温度场对盘片结构耦合振动的影响, 并与忽略温度影响的情况进行了对比。结果表明, 忽略温度影响的盘片结构耦合振动第一阶静频和动频误差均已超过10%, 对于以叶片振动为主的振动模态, 频率误差是第一阶的2~3倍。由于温度的影响使得盘片结构固有频率降低, 相同倍频的激振力, 在温度场作用下会激起更多阶的共振。因此在分析盘片结构耦合振动特性时, 温度的影响是不应当被忽略的。
This paper first establishes a finite element model of a turbine blade-disk structure, and obtains its steady-state temperature field by performing thermal analysis of the model.Then, effects of the temperature field on coupled vibration of the blade-disk structure under non-rotating and rotating conditions are analyzed respectively, andthe results are compared with those obtained without considering the temperature effects.Analysis results show that if the effect of temperature field is neglected, the static and dynamic frequency errors for the first mode vibration of the coupled blade-disk structure will be over 10%.For the modes where the blade vibration dominates, the frequency errors are 2 to 3 times higher than that of the first mode.Because the inherent frequencies of the blade-disk structure become lower due to the temperature field effects, the exciting forces of the same multiplication frequency can actually excite more orders of resonance.So the temperature field effects should not be ignored when analyzing coupled vibrations of turbine blade-disk structures.
[1]张大义, 史亚杰, 林力, 等.带宽弦叶片的盘片耦合振动特性研究[J].北京航空航天大学学报, 2004, 30(9):808-812.
[2]黄海鹰, 王建明.新型高推比涡轮风扇发动机盘片耦合振动分析[J].北京航空航天大学学报, 1994, 20(2):169-173.
[3]吕文林.航空发动机强度计算[M].北京:国防工业出版社, 1988.
[4]周传月, 邹经湘, 闻雪友, 等.燃气轮机带冠叶片耦合振动分析[J].哈尔滨工业大学学报, 2001, 33(1):129-133.
[5]佟刚, 乔永利, 艾延廷, 等.航空发动机涡轮转子叶片-盘耦合共振特性分析[J].沈阳航空工业学院学报, 2010, 27(5):6-10.
[6]周传月, 邹经湘, 闻雪友, 等.燃气轮机叶片-轮盘耦合系统振动特性计算[J].燃气涡轮试验与研究, 2000, 13(2):36-39.
[7]陈立明, 秦飞.汽轮机叶片-轮盘系统耦合振动分析[C].第14届全国结构工程学术会议论文集(第一册), 2005.
[8]艾书民, 王克明, 缪辉, 等.稳态温度场作用下涡轮叶片振动特性的研究[J].沈阳航空航天大学学报, 2011, 28(4):17-21.