航空宇航工程

输流管道的超临界固有频率分析

展开
  • 沈阳航空航天大学 航空航天工程学部(院), 沈阳 110136
缪旭(1985-), 女, 辽宁沈阳人, 在读研究生, 主要研究方向:非线性动力学与结构振动, E-mail:miaox0607@126.com。

收稿日期: 2013-05-15

基金资助

国家自然科学基金(项目编号:11202140;11172010;10702045)

Analysis of natural frequency of fluid-conveying pipeline in the supercritical regime

Expand
  • Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136

Received date: 2013-05-15

摘要

本文基于Kelvin粘弹性模型的横向非线性振动微分控制方程, 推导了两端支承输流管道的后屈曲微分方程。得到出两端铰支输流管道的屈曲构型表达式。当输流管道内的流体流速加快, 并且超过临界流速时, 输流管道的零平衡构型发生屈曲变形。对于超临界状态下输流管道系统的扰动方程, 利用伽辽金(Galerkin)方法, 得到了输流管道在超临界状态下的非线性振动的第一阶固有频率的解析表达式。

本文引用格式

缪旭, 金基铎, 杨天智 . 输流管道的超临界固有频率分析[J]. 沈阳航空航天大学学报, 2013 , 30(4) : 28 -31 . DOI: 10.3969/j.issn.2095-1248.2013.04.006

Abstract

In this study, the post-buckling differential equation of fluid-conveying pipelines supported at both ends is derived from the differential governing equation for the nonlinear transverse vibration of Kelvin viscoelastic model.The expression of buckling configurations for hinged-hinged fluid-conveying pipeline is obtained.It is found thatthe straight equilibrium configuration turns into the unstable and buckling deformation as the flow speed of fluid exceeds the critical value.For the perturbation equation for the supercritical piping system, , the analytic expression of the first supercritical natural frequency for the nonlinear vibration of supercritical fluid-conveying pipelines is obtainedin Galerkin method.

参考文献

[1]Padoussis, M P.Flow induced instabilities of cylindrical structures [J].Applied Mechanics Reviews, 1987, 40:163-175.
[2]Padoussis M P, Li G X.Pipes conveying fluid:a model-dynamical problems [J].Journal of Fluid and Structures, 1993, 7:137-204.
[3]Yoshizawa M, Nao H, Hasegawa, E, et al.Lateral vibration of a flexible pipe conveying fluid with pulsating flow [J].Bulletin of JSME, 1986, 29:2243-2250.
[4]Semler C, Padoussis M P.Nonlinear analysis of the parametric resonances of a planar fluid-conveying cantilevered pipe [J].Journal of Fluids and Structures, 1996, 10(7):787-825.
[5]金基铎, 杨晓东, 尹峰.两端铰支输流管道在脉动流作用下的稳定性和参数共振[J].航空学报, 2003, 2(4):317-322.
[6]金基铎, 宋志勇, 杨晓东.两端固定输流管道的稳定性和参数共振[C].第七届全国非线性动力学学术会议和第九届全国非线性振动学术会议文集.南京, 2004, 10:28-29.
[7]Jin J D, Song Z Y.Parametric resonances of supported pipes conveying pulsating fluid [J].Journal of fluids and Structures, 2005, 20(6):763-783.
[8]梁峰, 杨晓东, 闻邦椿.脉动流激励下输流管的参数共振IHB方法研究[J].振动与冲击, 2008, 27(9):44-46.
[9]金基铎, 梁峰, 杨小东, 等.两端固定输流管道参数共振的实验研究[J].机械工程学报, 2009, 45(3):89-93.
[10]杨天智.复杂约束输流管道的稳定性与分岔[D].沈阳:沈阳航空工业学院, 2007.
[11]Wang L.A further study on the non-linear dynamics of simply supported pipes conveying pulsating fluid [J].International Journal of Non-linear Mechanics, 2009, 44(1):115-121.
[12]Nayfeh A H, Emam S A.Exact solutions and stability of the postbuckling configurations of beams[J].Nonlinear Dynamics, 2008, 54(4):395-408.
[13]Ding H, Chen L Q.Galerkin methods for natural frequencies of high-speed axially moving beams[J].Journal of Sound and Vibration, 2010, 329:3484-3494.
[14]Ding H, Chen L Q.Equilibria of axially moving beams in the supercritical regime [J].Archive of Applied Mechanics, 2011, 81:51-64.
[15]Zhang G C, Ding H, Chen L Q, et al.Galerkin method for steady-state response of nonlinear forced vibration of axially moving beams at supercritical speeds[J].Journal of Sound and Vibration, 2012, 331:1612-1623.
[16]黄慧春, 张艳雷, 陈立群.超临界条件下固支边界输液管的内共振[J].力学季刊, 2011, 32(1):48-54.
[17]王世海.两端支承管道参数共振问题的研究[D].沈阳:沈阳航空工业学院, 2007.
[18]张国策, 丁虎, 陈立群.两端固定超临界轴向运动梁横向平衡位形与振动[J].振动工程学报, 2011, 24(1):8-13.
文章导航

/