航空宇航工程

复合材料薄壁结构在热声载荷作用下的非线性动态响应特性分析

展开
  • 沈阳航空航天大学 航空航天工程学部(院), 沈阳 110136
鲍冬冬(1989-), 女, 吉林农安人, 硕士研究生, 主要研究方向:发动机强度、振动及噪声, 312264081@qq.com;沙云东(1966-), 男, 黑龙江阿城人, 教授, 主要研究方向:发动机强度、振动及噪声, E-mail:ydsha2003@vip.sina.com。

收稿日期: 2012-12-01

Analysis of nonlinear dynamic response of composite thin-walled structure under thermo-acoustic loadings

Expand
  • Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136

Received date: 2012-12-01

摘要

复合材料薄壁结构被广泛地应用于先进的航空航天器上, 薄壁结构在工作时会承受复杂的机械力载荷、气动载荷、热载荷和声载荷, 这些载荷会导致结构以非线性方式响应。其中, 薄壁结构在热载荷和声载荷同时作用下易发生跳变响应。本文通过使用有限元法来研究复合材料薄壁结构在热声载荷下的响应计算与特征分析。首先建立热声载荷作用下复合材料薄板振动的非线性大挠度方程, 讨论非线性恢复力项对结构自由振动的影响。其次分析了热及噪声载荷造成的结构几何非线性对板动态响应的影响, 结果表明温度会改变薄板的位移及应力响应, 改变薄板基频并使功率谱密度(PSD)谱线变宽。在强噪声环境下, 板的位移响应会产生相应变化, 但由于此时声载荷完全超过了热力项从而制约了形状恢复应力, 所以薄板的应力响应不会产生变化。

本文引用格式

鲍冬冬, 沙云东, 蒋娜娜 . 复合材料薄壁结构在热声载荷作用下的非线性动态响应特性分析[J]. 沈阳航空航天大学学报, 2013 , 30(1) : 39 -42 . DOI: 10.3969/j.issn.2095-1248.2013.01.009

Abstract

Thin-walled structures of composite material have been widely applied to advanced flight vehicles in recent years. These structures will suffer severe complex loading conditions, a combination of mechanical, aerodynamic, thermal and acoustic loads, which may lead to nonlinear response of the structures. Thin-walled structures subjected to simultaneous effects of thermal and acoustic loads tend to exhibit snap-through response. This paper presents a nonlinear finite element model to study response calculation and characteristic analysis of thin-walled structures under the combined effects of thermal and acoustic loads. The nonlinear large deflection equations of composite panel under thermal acoustic loadings are established and the influence of nonlinear recovery-stress to structure vibration is discussed. Then the effect of geometry nonlinearity caused by thermal and acoustics loadings on dynamic response of panels is analyzed. The results show that temperature will change the deflection and stress response of the panel and cause frequency shifting and broaden the PSD plot. At high noise pressure levels, deflection of the panel will change accordingly, but stress response won’t change because the acoustic pressure completely exceeds the thermal items and constrains the shape-recovery stresses.

参考文献

[1]Chen L M.Mechanical analysis for composite materials[J].China Science and Technology Press, 2008(30):188-190.
[2]Ibrahim H H, Tawfik M, Negm H M, et al.Aerothermoacoustic response of shape memory alloy hybrid composite panels[J].Journal of Aircraft, 2009, 46(5):1544-1555.
(下转第65页)
[3]Ibrahim H H, Tawfik M, Negm H M.Thermal-acoustics random response of shape memory alloy hybrid composite plates[J].Journal of Aircraft, 2008, 45(3):962-969.
[4]Radu A G, Yang B, Kim K, et al.Prediction of the dynamic response and fatigue life of panels subjected to thermo-acoustic loading[C].45th Structure, Structural Dynamics & Materials Conference, 2004.
[5]Mei C, Chen R R.Coexisting thermal post buckling of composite plates with initial imperfections using finite element modal methods[C].Proceedings 37th Structures, Structural Dynamics, and Materials Conference, Salt Lake City, UT, 1996(4):1355-1362.
[6]Istenes R R, Rizzi S A, Wolfe H F.Experimental nonlinear random vibration results of thermally buckled composite panels[C].Proceedings of 36th Structures, Structural Dynamics, and Materials Conference, New Orleans, LA, 1995(3):1559-1568.
[7]Murphy K D.Theoretical and experimental studies in nonlinear dynamics and stability of elastic structures[D]NC:Durham, 1994.
[8]Murphy K D, Virgin L N, Rizzi S A.Experimental snap-through boundaries for acoustic excited thermally buckled plates[J].Experimental Mechanics, 1996, 36(4):312-317.
[9]沈观林, 胡更开.复合材料力学[M].北京:清华大学出版社, 2006.
文章导航

/