航空宇航工程

基于改进变密度法的飞机垂尾拓扑优化设计研究

展开
  • 沈阳航空航天大学 辽宁省数字化工艺仿真与测试技术重点实验室, 沈阳 110136
邱福生(1977-), 男, 江西于都人, 副教授, 主要研究方向:飞行器设计与制造一体化, CAD/CAPP/CAE/CAM、生产技术准备、产品开发过程建模等领域研究, E-mail:qfs77815@163.com。

收稿日期: 2012-10-30

The vertical tail of topology optimization design study based on improved variable density method

Expand
  • Liaoning Key Lab of Digital Process Simulation and Test Technology, Shenyang Aerospace University, Shenyang 110136

Received date: 2012-10-30

摘要

研究引入约束因子的改进变密度法的飞机垂尾布局优化设计问题。用MATLAB编写的带约束因子变密度法的算法程序和ANSYS软件的拓扑优化模块, 分别完成简化模型的拓扑优化设计, 实现飞机垂尾的结构布局设计。给出了两种方法的优化结果和优化数据, 对比分析可以发现带约束因子变密度优化方法是可行和有效的, 相较ANSYS 软件的拓扑优化模块针对飞机垂尾的结构布局设计更加简便、准确, 有着更好的推广应用价值。

本文引用格式

邱福生, 季武强, 徐厚超 . 基于改进变密度法的飞机垂尾拓扑优化设计研究[J]. 沈阳航空航天大学学报, 2013 , 30(1) : 26 -29 . DOI: 10.3969/j.issn.2095-1248.2013.01.006

Abstract

The layout optimization design for the vertical tail with improved variable density method by introducing the constraint factor is studied in this paper. It finishes topology optimization design of the simplified model of the vertical tail using MATLAB program for variable density method with constraint factors and ANSYS topology optimization module. The paper presents the optimization results and optimization data of the two methods, finds that the variable density method with the constraint factor is feasible and effective with comparison and analysis. The structure layout design of the vertical tail is simpler and more accurate, and has a better application value than ANSYS.

参考文献

[1]王伟.机翼结构拓扑优化的一种新渐进结构拓扑优化方法[J].飞机设计, 2007, 27(4):17-20.
[2]夏天翔, 姚卫星.连续体机构拓扑优化方法评述[J].航空工程进展, 2011, 2(1):1-11.
[3]Bendsoe M P, Kikuchi N.Generating optimal topologies in structural design using a homogenization method[J].Computer Methods, 1988, 71:197-224.
[4]周克民, 胡云昌.利用边厚度单元进行平面连续体的拓扑优化[J].天津城市建设学院学报, 2001, 7(1):33-35.
[5]Mlejnek H P, R Schirrmacher.An engineer`s approach to optimal material distribution and shape finding computer method in applied mechanic and engineering[J].Computer Methods in Applied Mechanics and Engineering, 1993, 106(1-2):1-26.
[6]Xie Y M, Steven G P.A simple evolutionary procedure for structural optimization[J].Computers and Structures, 1993, 106(1-2):1-26.
[7]Rozvany G I N, Kirsch U, Bendsoe M P, et al.Layout optimization of structures[J].Apply Mech Rev, 1995, 48:41-119.
[8]M Stolpe, K Svanberg.An alternative interpolation scheme for minimum compliance topology optimization[J].Structural and Multidisciplinary Optimization, 2001, 22(2):116-124.
文章导航

/