基础科学

可变盒子集合投影算子的研究

展开
  • 1.沈阳航空航天大学 理学院, 沈阳 110136;
    2.沈阳师范大学 教师专业发展学院, 沈阳 110034
胡旭(1984-), 男, 辽宁鞍山人, 在读硕士, 主要研究方向: 拓扑优化, E-mail:327789884@qq.com;刘勇进(1977-), 男, 江西赣州人, 教授, 主要研究方向:矩阵优化, 变分分析与优化, 数值计算, E-mail:yjliu@sau.edu.cn。

收稿日期: 2013-07-02

基金资助

国家自然科学基金青年科学基金(项目编号:11001180, 11371255);教育部留学归国人员科研启动基金(项目编号:JYB201302);辽宁省高等学校杰出青年学者成长计划(项目编号:LJQ2012012)

Study on the projection operator over the set of variable box

Expand
  • 1.School of Science, Shenyang Aerospace University, Shenyang 110136;
    2.School of Teacher Education, Shenyang Normal University, Shenyang 110034

Received date: 2013-07-02

摘要

众所周知, 在优化问题算法与理论的研究过程中, 如增广拉格朗日方法的应用以及优化问题的灵敏性分析等, 凸集上投影算子的性质起着极其重要的作用。通过投影算子对应的凸二次优化的Karush-Kuhn-Tucker (KKT)条件, 给出了可变盒子集合投影算子显示解的计算方法, 并对其Matlab软件实现。通过具体的数值算例, 验证了研究结果的正确性与有效性。

本文引用格式

胡旭, 刘勇进, 刘梅娇, 高静茹 . 可变盒子集合投影算子的研究[J]. 沈阳航空航天大学学报, 2013 , 30(6) : 93 -97 . DOI: 10.3969/j.issn.2095-1248.2013.06.020

Abstract

As we all know, the properties of the metric projection over convex sets play significant role in the study of the algorithms and theory of the related optimization problems such as the applications of the augmented Lagrangian methods and sensibility analysis of optimization problems, and so on.This paper presents the computational formula of the metric projection over the set of variable box by using the Karush-Kuhn-Tucker (KKT) condition of the corresponding convex quadratic optimization problems.We implement it via Matlab software.The reported numerical results for specific examples show that our algorithm is correct and effective.

参考文献

[1]HELGASON R, KENNINGTON J, LALL H.A polynomially bounded algorithm for a singly constrained quadratic program [J].Mathematical Programming, 1980, 18(1):338-343.
[2]BRUCKER P.An O(n) algorithm for quadratic knapsack problems [J].Operations Research Letters, 1984, 3(3):163-166.
[3]MACULAN N, PAULA G G De.A linear-time median-finding algorithm for projecting a vector on the simplex of [J].Operations Research Letters, 1989, 8(4):219-222.
[4]PARDALOS P M, KOVOOR N.An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds [J].Mathematical Programming, 1990, 46(1-3):321-328.
[5]MACULAN N, SANTIAGO C P, MACAMBIRA E M, et al.An O(n) algorithm for projecting a vector on the intersection of a hyperplane and a box in [J].Journal of Optimization Theory and Applications, 2003, 117(3):553-574.
[6]KIWIEL K C.Breakpoint searching algorithms for the continuous quadratic knapsack problem [J].Mathematical Programming, 2008, 112(2):473-491.
[7]DING C, SUN D F, TOH K-C.An introduction to a class of matrix cone programming [J].Methematical Programming, 2010(12):1-39.
[8]WU B, Ding C, SUN D F, et al.On the Moreau-Yoshida regularization of the vector k-norm related function [DB/OL].http://www.optimization-online.org/DB_FILE/2011/03/2978.pdf, 下载时间:2013-03-26.
[9]LIU Y-J, WANG S Y, SUN J-H.Finding the projection onto the intersection of a closed half-space and a variable box [J].Operations Research Letters, 2013, 41:259-264.
[10]GRANT M, BOYD S.CVX:Matlab software for disciplined convex programming, version 2.0 beta[DB/OL].http://cvxr.com/cvx, 下载时间:2012-12-09.
Options
文章导航

/