基础科学

一类闭凸锥上投影算子的计算

展开
  • 沈阳航空航天大学 理学院, 沈阳 110136
韩宁(1987-), 女, 内蒙古呼伦贝尔人, 在读硕士, 主要研究方向:矩阵优化, E-mail:hanning0806@126.com;刘勇进(1977-), 男, 江西赣州人, 教授, 主要研究方向:矩阵优化, 变分分析与优化, 数值计算, E-mail:yjliu@sau.edu.cn。

收稿日期: 2013-07-02

基金资助

国家自然科学基金项目(项目编号:11001180, 11371255), 教育部留学归国人员科研启动基金(项目编号:JYB201302), 辽宁省高等学校杰出青年学者成长计划(项目编号:LJQ2012012)

Computation of the metric projection over a class of closed convex cones

Expand
  • School of Science, Shenyang Aerospace University, Shenyang 110136

Received date: 2013-07-02

摘要

在凸优化问题的求解过程中, 通常会转换为求解优化问题的KKT条件, 而在求解其KKT条件时往往会涉及到某个闭凸锥上投影算子的计算。提出并详细阐述了某类凸锥上投影算子显示表达式的计算方法, 数值结果表明了算法的有效性。研究结果为加权l1范数、加权l范数上图锥投影算子方向导数、广义微分的研究提供了一定的理论基础。

本文引用格式

韩宁, 刘勇进, 刘梅娇 . 一类闭凸锥上投影算子的计算[J]. 沈阳航空航天大学学报, 2013 , 30(5) : 88 -91 . DOI: 10.3969/j.issn.2095-1248.2013.05.018

Abstract

Solution to convex optimization problems is usually converted to solve the KKT conditions, to which the computation of the metric projections over some convex cones is often crucial.This paper proposes an algorithm to compute the explicit formula of the metric projection over a class of closed convex cones.The reported numerical results show that our algorithm is effective.The results obtained in this paper can serve as the theoretic foundation to study the directional derivative and the generalized differential of the metric projections over the epigraph of the weighted l1 and l norms.

参考文献

[1]SUN D F.The strong second order sufficient condition and constraint nondegeneracy in nonlinear semidefinite programming and their implications[J].Mathematics of Operations Research, 2006, 31(4):761-776.
[2]WANG Y, ZHANG L W.Properties of equation reformulation of the Karush-Kuhn-Tucker condition for nonlinear second order cone optimization problems[J].Mathematical Methods of Operations Research, 2009, 70(2):195-218.
[3]HELGASON R, KENNINGTON J, LALL H.A polynomially bounded algorithm for a singly constrained quadratic program[J].Mathematical Programming, 1980, 18(1):338-343.
[4]PARDALOS P M, KOVOOR N.An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds[J].Mathematical Programming, 1990, 46(1-3):321-328.
[5]BROOKS J, DULA J H, BOONE E L.A pure L1-norm principal component analysis[J].Computational Statistics and Data Analysis, 2013(61):83-98.
[6]WU B, DING C, SUN D F, et al.On the Moreau-Yoshida regularization of the vector k-norm related function[DB/OL].http://www.math.nus.edu.sg/~matsundf/k-norm-08 Mar 11.pdf, 下载时间:2012-06-27.
[7]王英楠, 修乃华.几类非对称矩阵锥分析 [D].北京:北京交通大学, 2011.
[8]DING C, SUN D F, TOH K-C.An introduction to a class of matrix cone programming[DB/OL].http://www.math.nus.edu.sg/~matsundf/Introduction Mcp-Sep-15.pdf, 下载时间:2012-06-28.
文章导航

/