于洋(1985-),男,辽宁朝阳人,讲师,博士,主要研究方向:盲信号处理、智能优化算法,E-mail:20180029@sau.edu.cn。 |
收稿日期: 2023-11-13
网络出版日期: 2024-03-29
基金资助
辽宁省自然科学基金(2022-MS-299)
航空科学基金(201933054002)
辽宁省教育厅项目(LJKMZ20220529)
Variational Bayesian independent vector analysis method for rolling bearing fault diagnosis
Received date: 2023-11-13
Online published: 2024-03-29
在实际工程中,采集到的滚动轴承故障信号往往来自多个源。多个故障信号在传播路径中相互耦合形成了复合故障信号,使故障诊断问题变得更加复杂。如果直接对复合信号进行分析,那么提取到的故障特征中往往存在多源的故障频率,导致无法正确判断故障出现的位置。针对这一问题提出了变分贝叶斯独立向量分析(variational Bayesian independent vector analysis,VBIVA)算法,并将该算法应用于故障诊断。通过与独立向量分析(independent vector analysis,IVA)算法以及变分贝叶斯独立分量分析(variational Bayesian independent component analysis,VBICA)算法的仿真对比,证明VBIVA算法有效地解决了复合故障信号的盲源分离及故障诊断问题。
于洋 , 尹钰 , 季策 , 林峰 , 于明月 . 面向滚动轴承故障诊断的VBIVA方法[J]. 沈阳航空航天大学学报, 2024 , 41(1) : 45 -53 . DOI: 10.3969/j.issn.2095-1248.2024.01.006
In practical engineering occasions, the collected fault signals of rolling bearing are from multiple sources. The multiple fault signals are coupled to form the composite fault signals in the propagation path, which makes the fault diagnosis problem more complex. If the composite fault signal is directly analyzed, the extracted fault feature contains multiple source fault frequencies, which may result in a failure to determine the location of the fault. In order to resolve the problem, variational Bayesian independent vector analysis(VBIVA) algorithm was proposed and applied to fault diagnosis. Simulation results show that the proposed algorithm solved the problem of blind source separation and fault diagnosis in the comparison with IVA and VBICA.
1 |
|
2 |
|
3 |
|
4 |
|
5 |
冯葛豪,胥永刚,孙国栋,等. 谱聚类傅里叶分解及其在轴承故障诊断中应用[J/OL].轴承,2023,1-10[2023-09-25].
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
吴金钟,艾延廷,陈英涛,等.基于盲源分离技术的航空发动机轴承故障诊断[J].滨州学院学报,2022,38(2):27-35.
|
18 |
陈剑,刘圆圆,黄凯旋,等.基于奇异值分解和独立分量分析的滚动轴承故障诊断方法[J].计量学报,2022,43(6):777-785.
|
19 |
王立炜,栾孝驰,沙云东,等.基于快速ICA的复杂路径下滚棒轴承外圈划伤故障特征提取[J].机械设计与制造,2021(12):77-81,87.
|
20 |
|
21 |
|
22 |
|
23 |
|
/
〈 |
|
〉 |