蒋丽英(1976-),女,辽宁沈阳人,副教授,博士,主要研究方向:旋转机械系统故障检测,E-mail:jlylcb01@163.com。 |
收稿日期: 2023-06-18
网络出版日期: 2024-02-05
基金资助
国家自然科学基金(62003223)
Evaluation of rolling bearing performance degradation based on VMD-SVDD
Received date: 2023-06-18
Online published: 2024-02-05
针对滚动轴承性能退化初期趋势不明显和早期故障难以检测的问题,提出了一种基于新筛选指标的变分模态分解(variational modal decomposition,VMD)信号预处理与支持向量数据描述(support vector data description,SVDD)相结合的性能退化评估方法。首先对原始信号进行变分模态分解;其次在模态分量(intrinsic mode function,IMF)选择问题上提出了一个新的筛选指标P,该指标的计算公式由包络谱峭度和Wasserstein距离共同组成,选择P值大于阈值M的模态分量进行信号重构;最后提取重构信号的均方根值、波形因子、峰峰值3种特征构建表征轴承性能退化的特征向量,并以健康样本的退化特征向量作为输入建立SVDD性能退化评估模型,用全寿命样本特征向量进行验证。实验结果表明,此方法对早期故障更敏感,能够准确检测到早期故障。
蒋丽英 , 刘明昆 , 李贺 , 郭濠 , 张雷鸣 . 基于VMD-SVDD的滚动轴承性能退化评估[J]. 沈阳航空航天大学学报, 2023 , 40(6) : 28 -34 . DOI: 10.3969/j.issn.2095-1248.2023.06.005
Aiming at the problems that the initial trend of rolling bearing performance degradation was not obvious and the early fault was difficult to detect, a performance degradation evaluation method based on the combination of variational modal decomposition (VMD) signal preprocessing and support vector data description (SVDD) were proposed. Firstly, the original signal was decomposed by variational mode. Secondly, a new screening index P was proposed for the selection of modal components (IMF). The calculation formula of this index consists of kurtosis of envelope spectrum and Wasserstein distance, and the modal components with P value greater than the threshold M were selected for signal reconstruction. Finally, the root mean square value, waveform factor and peak-to-peak value of the reconstructed signal were extracted to construct a feature vector representing the degradation of bearing performance, and the SVDD performance degradation evaluation model was established with the degradation feature vector of healthy samples as input, which was verified by the full-life sample feature vector. The experimental results show that this method is more sensitive to early faults and can accurately detect early faults.
1 |
|
2 |
|
3 |
|
4 |
王冉,周雁翔,胡雄,等.基于EMD多尺度威布尔分布与HMM的轴承性能退化评估方法[J].振动与冲击,2022,41(3):209-215.
|
5 |
杨潇谊,吴建德,马军.基于散布熵和余弦欧氏距离的滚动轴承性能退化评估方法[J].电子测量与仪器学报,2020,34(7):15-24.
|
6 |
吕明珠,苏晓明,刘世勋,等.基于VMD-SVM的滚动轴承退化状态识别[J].机械设计与制造,2020(1):96-100.
|
7 |
|
8 |
周胜明,曲建岭,高峰,等.基于HE-SVDD的航空发动机工作状态识别[J].仪器仪表学报,2016,37(2):308-315.
|
9 |
李兆飞,柴毅,任小洪.混沌分形特征与支持向量数据域描述辨识机械动态系统异常[J].农业工程学报,2015,31(10):211-218.
|
10 |
刘志亮,刘仕林,李兴林,等.滚动轴承安全域建模方法及其在高速列车异常检测中的应用[J].机械工程学报,2017,53(10):116-124.
|
11 |
姜万录,雷亚飞,韩可,等.基于VMD和SVDD结合的滚动轴承性能退化程度定量评估[J].振动与冲击,2018,37(22):43-50.
|
12 |
张龙,黄文艺,熊国良,等.基于多域特征与高斯混合模型的滚动轴承性能退化评估[J].中国机械工程,2014,25(22):3066-3072.
|
13 |
蔡曜,司玉辉,王玉琢,等.陀螺电机轴承健康评估隐马尔可夫模型适应性设计[J].传感技术学报,2023,36(9):1417-1425.
|
14 |
王文凯,邓斌 .基于DAE-IPSO-SVM的电缆早期故障识别方法[J].国外电子测量技术,2021,40(8):29-35.
|
15 |
张金豹. 基于全寿命数据的滚动轴承运行状态评估和剩余寿命预测[D].哈尔滨:哈尔滨工业大学,2020.
|
/
〈 |
|
〉 |