贾丹娜(1999-),女,河北保定人,硕士研究生,主要研究方向:运筹学与控制论,E-mail: Jiadanna2021@163.com |
王莉(1978-),女,辽宁葫芦岛人,副教授,博士,主要研究方向:运筹学与控制论,E-mail: liwang211@163.com。 |
收稿日期: 2023-04-10
网络出版日期: 2023-12-22
基金资助
国家自然科学基金(11901422)
The second⁃order differential equation method with perturbation terms for solving variational inequality problem
Received date: 2023-04-10
Online published: 2023-12-22
利用带扰动项的二阶微分方程方法求解变分不等式问题,并讨论其解的收敛性和收敛速度。首先,通过对原始变分不等式问题所对应的Karush⁃Kuhn⁃Tucker(KKT)条件进行等价转换后,借助光滑化的互补函数,等价转化成求解光滑方程组 ,进一步等价于求解一个无约束优化问题;其次,建立带扰动项的二阶微分方程系统来求解最终的无约束优化问题,并在一定的约束条件下,得到了该二阶微分方程系统的解稳定性及收敛速度,即得到了所求的变分不等式问题的收敛性和解的收敛速度;最后,给出数值实验说明所提出的微分方程方法求解变分不等式的有效性。
关键词: 变分不等式; 二阶微分方程; 扰动项; Karush⁃Kuhn⁃Tucker条件; 稳定性
贾丹娜 , 王莉 , 孙菊贺 , 庄慧婷 , 袁艳红 . 带扰动项的二阶微分方程方法求解变分不等式问题[J]. 沈阳航空航天大学学报, 2023 , 40(5) : 90 -96 . DOI: 10.3969/j.issn.2095-1248.2023.05.012
The second-order differential equations with perturbation terms to solve variational inequality problem were focused on and discussed the convergence of its solution and the speed of the convergence. Firstly,the Karush-Kuhn-Tucker (KKT) conditions of the original variational inequality problem were equivalently transformed into a system of smoothing equations by using a smoothing complementary function,and it was furtherly equivalent to an unconstrained optimization problem. Secondly,a system of second-order differential equations with perturbation terms was established to solve the final unconstrained optimization problem and discuss the stability of the differential equation system and the speed of convergence under the certain conditions. The convergence and the speed of the convergence for the solution to the original variational inequality problem was discussed. Finally,numerical experiments were given to show the effectiveness of the differential equation method for solving the variational inequality problem.
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
王莉.变分不等式的微分方程方法与增广Lagrange 方法[D].大连:大连理工大学,2011.
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
孙菊贺.锥约束变分不等式问题的数值方法的研究[D].大连:大连理工大学,2008.
|
14 |
|
15 |
|
/
〈 |
|
〉 |