This paper is concerned with the number and distribution of limit cycles of a perturbed quadratic Hamiltonian system which has 2 centers and 2 saddle points. The perturbation skills are applied to study the Hopf and heteroclinic bifurcation of such system under S2-reversible quartic perturbation. It is found that the perturbed system can have 6 limit cycles. The results acquired in this paper are useful to the study of the second part of 16th Hilbert Problem.
[1]李继彬.混沌与Melnikov方法[M].重庆:重庆大学出版, 1989.
[2]Lubomir Gavrilov, Iliya D.Iliev.Second-order analysis in polynomially perturbed reversible quadratic Hamiltonian systems[J].Ergodic Theory and Dynamical Systems, 2000(20):1671-1686.
[3]Han M, Yang J, Tarta A, et al.Limit cycles near homoclinic and heteroclinic loops[J].J.Dyn.Diff.Equat, 2008(20):923-944.
[4]候衍芬, 韩茂安.平面近哈密顿系统的Melnikov函数与Hopf分支[J].上海师范大学学报, 2006(35):1-10.
[5]张同华, 韩茂安, 臧红, 等.变系统复眼环的极限环分支[J].中国科学A辑数学, 2006(36):1267-1278.
[6]徐伟骄.Z_4等变系统的极限环个数和一类四点边值问题[D].上海:上海师范大学, 2009.
[7]闫辉.一类李纳系统的极限环[D].上海:上海师范大学, 2009.
[8]马红燕.几类Z3等变近哈密尔顿多项式系统的极限环的个数[D].上海:上海师范大学, 2009.