[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
Information Science and Engineering

GNSS/INS integrated positioning method based on fully connected neural network

  • Ershen WANG , 1a, 1b ,
  • Yifan LIU 1a ,
  • Tengli YU 1c ,
  • Jian YANG 2 ,
  • Da LIU 2 ,
  • Shuning ZHANG 1c ,
  • Jingyi YI 1a ,
  • Xin LI 1a
Expand
  • 1a. College of Electronic and Information Engineering,Shenyang 110136,China
  • 1b. College of Aerospace Engineering,Shenyang 110136,China
  • 1c. College of Aerospace Engineering,Shenyang Aerospace University,Shenyang 110136,China
  • 2. Liaoning General Aviation Academy,Shenyang 110136,China

Received date: 2024-04-27

  Online published: 2024-12-11

Abstract

As a navigation solution with higher accuracy and better robustness compared to single navigation systems,GNSS/INS integrated navigation has been widely applied in various carriers.Aiming at the problem of the satellite navigation signal interruption caused by environmental obstruction or electromagnetic interference to reduce the accuracy of integrated positioning,GNSS/INS integrated navigation positioning method by a fully connected neural network (FCNN)was proposed.This method consisted of training and prediction modules.Under normal GNSS signal conditions,the me-thod utilized the position and velocity information calculated by INS and the position and velocity information output by the integrated navigation to train the FCNN model.When the GNSS signals were interrupted or fail,the pre-trained FCNN model was used to predict the navigation solutions.Experimental data was employed to validate the proposed method.The results indicate that the GNSS/INS based on FCNN integrated navigation method proposed in this study effectively suppresses the divergence of single INS positioning errors,thereby improving the accuracy and availability of GNSS/INS integra-ted positioning results when the GNSS signals are interrupted.

Cite this article

Ershen WANG , Yifan LIU , Tengli YU , Jian YANG , Da LIU , Shuning ZHANG , Jingyi YI , Xin LI . GNSS/INS integrated positioning method based on fully connected neural network[J]. Journal of Shenyang Aerospace University, 2024 , 41(5) : 54 -61 . DOI: 10.3969/j.issn.2095-1248.2024.05.006

[an error occurred while processing this directive]
1
Guo J Li X X Li Z H,et al.Multi-GNSS precise point positioning for precision agriculture[J].Precision Agriculture201819(5):895-911.

2
Wu Q Sun M F Zhou C J,et al.Precise point positioning using dual-frequency GNSS observations on smartphone[J].Sensors201919(9):2189.

3
王尔申,朱骏,徐嵩,等.基于无迹卡尔曼滤波的BDS/INS组合定位方法[J].沈阳航空航天大学学报202340(4):19-24.

4
王尔申,孙彩苗,黄煜峰,等.改进粒子群优化的卫星导航选星算法[J].北京航空航天大学学报202147(1):1-6.

5
Gonzalez R Dabove P.Performance assessment of an ultra low-cost inertial measurement unit for ground vehicle navigation[J].Sensors201919(18):3865.

6
高为广,陈谷仓.结合自适应滤波和神经网络的GNSS/INS抗差组合导航算法[J].武汉大学学报(信息科学版)201439(11):1323-1328.

7
徐晓苏,周峰,张涛,等.遗传算法优化的神经网络在SINS/GPS中的应用[J].中国惯性技术学报201523(3):322-327.

8
Yao Y Q Xu X S Zhu C C,et al.A hybrid fusion algorithm for GPS/INS integration during GPS outa-ges[J].Measurement2017103(1):42-51.

9
陈光武,李文元,于月,等.基于改进径向基神经网络的MEMS惯导系统误差抑制方法[J].中国惯性技术学报201927(1):15-22,94.

10
陈光武,程鉴皓,杨菊花,等.基于改进神经网络增强自适应UKF的组合导航系统[J].电子与信息学报201941(7):1766-1773.

11
Wang G C Xu X S Yao Y Q,et al.A novel BPNN-based method to overcome the GPS outa-ges for INS/GPS system[J].IEEE Access2019(7):82134-82143.

12
Dai H F Bian H W Wang R Y,et al.An INS/GNSS integrated navigation in GNSS denied environment using recurrent neural network[J].Defence Technology202016(2):334-340.

13
Fang W Jiang J G Lu S Q,et al.A LSTM algorithm estimating pseudo measurements for aiding INS during GNSS signal outages[J].Remote Sen-sing202012(2):256.

14
张跃发.神经网络辅助的GNSS/INS车载组合导航算法研究[D].西安:长安大学,2023.

15
Li D A Wu Y Q Zhao J M.Novel hybrid algorithm of improved CKF and GRU for GPS/INS[J].IEEE Access2020(8):202836-202847.

16
Tang Y N Jiang J G Liu J H,et al.A GRU and AKF-based hybrid algorithm for improving INS/GNSS navigation accuracy during GNSS outage[J].Remote Sensing202214(3):752-757.

17
Chen K Chang G B Chen C.GINav:a MATLAB-based software for the data processing and analysis of a GNSS/INS integrated navigation system[J].GPS Solutions202125(3):108.

Outlines

/

[an error occurred while processing this directive]