航空宇航工程

基于包络谱分析的航空发动机主轴轴承故障诊断

展开
  • 沈阳航空航天大学 辽宁省航空推进系统先进测试技术重点实验室, 沈阳 110136
梁先芽(1987-), 男, 湖南耒阳人, 在读硕士, 主要研究方向:航空发动机强度、振动及噪声, E-mail:Liangxy24@yeah.net;沙云东(1966-), 男, 黑龙江阿城人, 教授, 主要研究方向:航空发动机强度, 振动及噪声。

收稿日期: 2013-01-10

Fault diagnosis of aero-engine main shaft bearings based on envelope spectrum analysis

Expand
  • Liaoning Key Laboratory of Advanced Test Technology for Aeronautical PropulsionSystem, Shenyang Aerospace University, Shenyang 110136

Received date: 2013-01-10

摘要

针对某型航空发动机地面检测条件下采集到的机匣振动信号, 利用小波变换和包络分析相结合的方法提取主轴轴承故障信息并进行故障诊断。首先对所采集到的航空发动机振动信号进行小波降噪, 再利用小波变换提取降噪后的滚动轴承故障特征信号, 然后对该故障特征频段进行包络谱分析, 以获得特征峰值频率。将该方法应用到试验数据中, 分析发现该方法能够有效地诊断出航空发动机主轴轴承故障及具体的故障位置。这为航空发动机主轴轴承故障诊断提供了重要的判断依据, 具有广阔的应用前景。

本文引用格式

梁先芽, 沙云东, 栾孝驰, 赵奉同, 张强 . 基于包络谱分析的航空发动机主轴轴承故障诊断[J]. 沈阳航空航天大学学报, 2013 , 30(4) : 18 -22 . DOI: 10.3969/j.issn.2095-1248.2013.04.004

Abstract

A method combining wavelet transform and envelope spectrum is proposed for the collection of fault information and the fault diagnosis for the aero-engine main shaft bearings, taking advantage of the recorded aero-engine vibration signals collected from the ground tests.First, the recorded aero-engine vibration signals are wavelet de-noised; then, the wavelet de-noised fault feature signals are extracted through wavelet transform; lastly, the fault feature signals are analyzed through the Hilbert envelope spectrum to obtain the characteristic peak frequencies.After being applied in tests, this method is approved to be effective in the diagnosis of the fault and the definite fault position of the aero-engine main shaft bearings, which may provide a virtual basis on the fault diagnosis of aero-engine main shaft bearings and has a broad prospect of application.

参考文献

[1]George J A, Andres R M.Helicopter bearing failure detection utilizing shock pulse techniques[C].AIAA/SAE 13th Proposion Conference, 1977:1-7.
[2]Kim P Y.Proximity transducer technique for bearing health monitoring[J].J.Propulsion, 1986, 3(1):84-89.
[3]Mallat S.A Theory for multi-resolution signal decomposition:the wavelet representation signal decomposition [J].IEEE Transon Pattern Analysis and Machine Intelligence, 1989, 11( 2):257-263.
[4]Fred K Choy, Lei Wang.On-line vibration monitoring of ball bearing damage using an experimental test rig[J].Journal of Propulsion and Power, 2007, 23(3):629-636.
[5]McInerny S A, Dai Y.Basic vibration signal processing for bearing fault detection[J].IEEE Transactions on Education, 2003, 46(1):149-156.
[6]余光伟, 郑敏.小波变换在滚动轴承故障分析中的应用[J].轴承, 2011, 7:37-40.
[7]赵美云, 李力, 陈保家.滚动轴承故障声发射信号的小波包络谱分析[J].轴承, 2008, 4:38-41.
[8]范显峰, 姜兴渭.基于小波包变换的信号去噪方法研究[J].哈尔滨工业大学学报, 2003, 7:809-811.
[9]Jason R.Stack, Thomas G.Habetler.Fault classification and fault signature production for rolling element bearings in electric machines[J].IEEE, Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2003:172-176.
文章导航

/