航空宇航工程

基于遗传模拟退火算法的无人机航迹规划

展开
  • 沈阳航空航天大学 航空航天工程学部(院), 沈阳 110136
邱福生(1977-), 男, 江西于都人, 副教授, 主要研究方向:飞机系统设计与试验技术、飞行器设计与制造一体化(CAX集成技术/DFX), E-mail:shenhangsau2011@sina.com。

收稿日期: 2013-11-05

UAV route planning based on the genetic simulated annealing algorithm

Expand
  • Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136

Received date: 2013-11-05

摘要

航迹规划技术是无人机任务规划系统中重要的核心技术之一, 无人机飞行空间广阔, 需要一种快速搜索最佳路径的方法。首先在飞行区域中建立数字地图模型和防空威胁区模型, 在满足无人机飞行约束条件的情况下, 为无人机航迹规划提供一种遗传模拟退火算法, 充分利用模拟退化算法的概率突跳特性和遗传算法强大的快速搜索能力。仿真结果表明, 使用该算法无人机能够自动避开模拟数字地图的威胁区, 搜索出一条安全有效航迹, 并保证航线的完整性和最优性。

本文引用格式

邱福生, 杨建平, 邵绪威 . 基于遗传模拟退火算法的无人机航迹规划[J]. 沈阳航空航天大学学报, 2014 , 31(1) : 16 -19 . DOI: 10.3969/j.issn.2095-1248.2014.01.004

Abstract

Path planning technology is one of the core technologies of UAV mission planning system.UAV flight space is large, which needs a method to quickly find out the best path.This paper sets up a digital map model and a model for air defense threat area in the airfield domain.Under the condition of meeting the UAV flight constraints, the paper provides a genetic simulated annealing algorithm for UAV track planning, and makes full use of the probability kick features of simulation degradation algorithm and powerful ability of fast searching genetic algorithm.Simulation results show that with this algorithm, UAV can automatically avoid the threatened field of simulated digital map area, search out a safe and effective path, and ensure the integrity and optimality of their routes.

参考文献

[1]杨军, 朱学平, 朱苏朋, 等.飞行器最优控制[M].北京:国防工业出版社, 2011.
[2]Robert J Szcaerba J.Robust algorithm for real-time router planning[J].IEEE Transactions 0n Aerospace and Electronic System, 2000, 36(3):869-875.
[3]Kenneny J, Eberhart R C.Particle swarm optimization[C].IEEE International Conference on Neural Networks, Perth, Western Australia, 1995.
[4]巩敦卫, 郝国生, 周勇, 等.交互式遗传算法原理及其应用[M].北京:国防工业出版社, 2007.
[5]Krikpatrick S, Gelett C, Veechi M.Optimization by simulated annealing[J].Science, 1983, 200(8):671-680.
[6]Ioannis K Nikolos, Kimon P.Valavanis, Nikos C.Sourveloudis.Evolutionary algorithm based offline/online path panner for UAV nvigation[J].EE Transactions on Systems Man and Cybernetics, 2003, 33(6):898-912.
[7]刘娟.小型无人机地面站电子地图子系统研究与设计[D].呼和浩特:内蒙古工业大学, 2009.
[8]张延松.基于遗传算法的无人机航迹规划研究[D].长沙:中南大学, 2010.
[9]巴海涛.无人机航迹规划方法研究[D].西安:西北工业大学, 2006.
[10]柳长安.无人机航路规划方法研究[D].西安:西北工业大学, 2003.
[11]郑昌文, 严平, 丁明跃, 等.飞行器航迹规划[M].北京:国防工业出版社, 2008.
文章导航

/