[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
信息科学与工程

基于深度神经网络的火箭图像目标识别与跟踪

  • 刘光花 ,
  • 杨发顶 ,
  • 程亚伟 ,
  • 胡振宇
展开
  • 酒泉卫星发射中心 测发部门,甘肃 酒泉 732750

刘光花(1978-),女,山西平遥人,工程师,主要研究方向:图像处理,E-mail:

收稿日期: 2024-04-06

  网络出版日期: 2024-09-10

基金资助

某部某技术创新团队专项基金(项目编号:******)

Target recognition and tracking in rocket image based on deep neural network

  • Guanghua LIU ,
  • Fading YANG ,
  • Yawei CHENG ,
  • Zhenyu HU
Expand
  • Test Launch Department,Jiuquan Satellite Launch Center,Gansu Jiuquan 732750,China

Received date: 2024-04-06

  Online published: 2024-09-10

摘要

火箭图像目标识别与跟踪是图像目标识别的重要应用领域,是实现火箭测试发射、飞行控制的重要支撑,对火箭目标跟踪、姿态分析控制具有重要意义。上升段的火箭目标视频图像跟踪是火箭飞行测控的重要阶段,但目前对火箭上升段的视频图像跟踪主要依靠人工手动操作云台控制器,图像跟踪存在跟踪滞后、画面抖动等问题,跟踪效果受人为因素影响较大。结合全卷积理论和深度学习方法,提出一种基于全卷积深度神经网络的火箭图像目标识别与跟踪方法,采集火箭发射及上升段的图像作为样本,构建、训练全卷积网络模型,采用端到端的语义分割方法,在深度分类网络的基础上,实现火箭目标在像素级别上的语义判断,具有较好的识别率和鲁棒性。在火箭目标识别的基础上建立云台控制模型,通过对云台的智能控制获得火箭上升段的高质量图像,完成对火箭目标的跟踪。

本文引用格式

刘光花 , 杨发顶 , 程亚伟 , 胡振宇 . 基于深度神经网络的火箭图像目标识别与跟踪[J]. 沈阳航空航天大学学报, 2024 , 41(4) : 59 -66 . DOI: 10.3969/j.issn.2095-1248.2024.04.007

Abstract

Rocket image target recognition and tracking is an important application field of image target recognition,which is an important support for rocket test launch and flight control,and has great significance for rocket target tracking and attitude analysis and control.Image tracking of rocket target in ascending stage is an important stage of rocket flight measurement and control,but at present,the video image tracking of rocket in ascending stage mainly relies on manual operation of pinion controller to achieve rocket tracking in the image.The tracking image has some phenomena such as tracking lag and picture shaking,and the tracking effect is greatly affected by human factors.Combining full convolution theory with deep learning method,a method of rocket image target recognition and tracking based on full convolution deep neural network was proposed.Images of rocket launch and ascending flight were collected as samples,and a full convolutional network model was constructed and trained.An end-to-end semantic segmentation method was adopted to realize semantic judgment of rocket targets at pixel level on the basis of deep classification network,with good recognition rate and robustness.Based on the recognition of the rocket target,the PTZ control model was established,the high-quality image of the rocket ascent stage was obtained through the intelligent control of the PTZ,and the tracking of the rocket target was realized.

[an error occurred while processing this directive]
1
文志强.基于均值偏移算法的运动目标跟踪技术的研究[D].长沙:中南大学,2008.

2
周云,胡锦楠,赵瑜,等.基于卡尔曼滤波改进压缩感知算法的车辆目标跟踪[J].湖南大学学报(自然科学版)202350(1):11-21.

3
张丰,冯平.视频目标跟踪综述[J].计算机时代2022(1):32-35.

4
赵麒瑞,韩耀斌,沈惠,等.上升段飞行器目标的视频图像跟踪[J].南京航空航天大学学报201951():68-72.

5
李溪,杨明,杜雅婷.基于分区选择和Gabor小波的遮挡人脸识别[J].微电子学与计算机202340(5):39-46.

6
袁瑜键.基于纹理特征的目标识别与跟踪技术研究[D].北京:北京理工大学,2016.

7
吴鑫,王桂英,丛杨.基于颜色和深度信息融合的目标识别方法[J].农业工程学报201329():96-100.

8
孙立功,阎保定,李萍,等.基于特征差异的彩色目标快速识别方法[J].微计算机信息200622(32):256-258.

9
李旭冬,叶茂,李涛.基于卷积神经网络的目标检测研究综述[J].计算机应用研究201734(10):2881-2886,2891.

10
Shelhamer E Long J Darrell T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence201740(1):640-651.

11
Krizhevsky A Sutskever I Hinton G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM201225(2):84-90.

12
Szegedy C Liu W Jia Y Q,et al.Going deeper with convolutions[EB/OL].(2014-10-06)[2023-04-05].

13
赵麒瑞.基于手持终端的车牌号码识别系统[D].长沙:国防科技大学,2017.

14
王卓,瞿绍军.深度学习实时语义分割研究进展和挑战[J].中国图象图形学报202429(5):1188-1220.

15
高常鑫,徐正泽,吴东岳,等.深度学习实时语义分割综述[J].中国图象图形学报202429(5):1119-1145.

16
刘进进,吴辉,叶伟.基于摄像机云台控制系统的应用研究[J].工业控制计算机201932(4):127-128.

17
刘雪枫.摄像机云台远程控制与视频监控应用研究[D].抚州:东华理工大学,2015.

文章导航

/

[an error occurred while processing this directive]