[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
民用航空与安全工程

基于多变量灰色模型的航空安全预测方法

  • 谷倩倩 , 1, 2 ,
  • 徐超 1 ,
  • 谭学明 1
展开
  • 1. 滨州学院 航空工程学院,山东 滨州 256600
  • 2. 南京航空航天大学 民航学院,南京 211106

谷倩倩(1990-),女,山东聊城人,讲师,主要研究方向:交通信息工程及控制、交通安全,E-mail:

收稿日期: 2023-12-21

  网络出版日期: 2024-05-29

基金资助

山东省自然科学基金(ZR2022QE284)

山东省重点研发计划项目(2023RKY02016)

滨州学院科研基金项目(BZXYLG202204)

The aviation safety prediction method based on multivariate gray model

  • Qianqian GU , 1, 2 ,
  • Chao XU 1 ,
  • Xueming TAN 1
Expand
  • 1. College of Aeronautical Engineering,Binzhou University,Binzhou 256600,China
  • 2. College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China

Received date: 2023-12-21

  Online published: 2024-05-29

摘要

由于航空事故具有致因机理复杂且致因因素较强的灰色特性,传统的灰色预测模型只适用于单变量预测且具有预测精度低的缺陷。基于此,提出一种以遗传算法优化的多变量灰色模型开展航空安全预测的方法。首先,以航空事故致因理论为基础,从SHEL模型的角度运用鱼骨图确定航空安全影响因素,并以相关系数矩阵可视化图形进一步筛选关键致因因素;其次,构建以人为因素、环境因素、设备设施因素、外来影响因素等为强输入指标的多变量灰色模型,并利用遗传算法对模型的待定参数r全局搜索最优解;最后,以2007-2016年中国民用航空器事故征候万次率和航空不安全事件统计为对象进行仿真实验,并利用GM(1,1)和MGM(1,n)两种灰色预测模型进行预测对比。结果表明:提出的方法与传统的灰色模型相比,在短时间的航空安全预测中平均预测误差约为1.6%,验证了该方法的有效性和较高的预测精度。

本文引用格式

谷倩倩 , 徐超 , 谭学明 . 基于多变量灰色模型的航空安全预测方法[J]. 沈阳航空航天大学学报, 2024 , 41(2) : 76 -85 . DOI: 10.3969/j.issn.2095-1248.2024.02.009

Abstract

Considering that the causal mechanism of aviation accidents is complicated and has many causal factors with strong gray characteristics, the traditional gray prediction model is only applicable to univariate prediction and has the defect of low prediction accuracy.A method of aviation safety prediction was proposed based on a multivariate gray model optimized by genetic algorithm. Firstly, the analysis method of fishbone diagram was applied from the perspective of SHEL model to determine the factors affecting aviation safety, and the correlation coefficient matrix visualization graph was used to further screen the key causative factors. Secondly, a multivariate gray aviation safety prediction model was constructed with human factors, environmental factors, equipment and facility factors, external influencing factors and as the strong input indexes of the prediction model, and the optimal solution of the model’s undetermined parameter r was searched globally and parallel by genetic algorithm. Finally, simulation experiments were conducted utilizing Chinese civil aircraft accident rate of 10 000 and aviation unsafe event statistics from 2007 to 2016. Predictive comparisons were then made between two gray prediction models, GM(1,1)and MGM(1,n). The findings indicate that compared to the traditional gray model, the proposed method demonstrates an average prediction error of around 1.6% in the aviation safety short-time prediction, showcasing the effectiveness and high accuracy of the proposed method.

[an error occurred while processing this directive]
1
程明,梁文娟.MLR和ARIMA模型在民航安全业绩预测中的应用[J].中国安全科学学报201626(2):25-30.

2
Li C Chiang T W.Complex neurofuzzy ARIMA forecasting:a new approach using complex fuzzy sets[J].IEEE Transactions on Fuzzy Systems201321(3):567-584.

3
甘旭升,端木京顺,高建国,等.基于ARIMA模型的航空装备事故时序预测[J].中国安全科学学报201222(3):97-102.

4
杜毅.民用航空事故征候万时率的回归分析[J].中国民航飞行学院学报201021(1):42-44.

5
Wei P F Lu Z Z SONG J W. Variable importance analysis: a comprehensive review[J]. Relia-bility Engineering and System Safety2015142(3):399-432.

6
Shyur H J.A quantitative model for aviation safety risk assessment[J].Computers and Industrial Engineering200854(1):34-44.

7
戴蓉,黄成.飞机飞行事故率预测建模与仿真研究[J].计算机仿真201128(7):120-123.

8
郭娜.民航不安全事件预测研究[D].天津:中国民航大学,2019.

9
曾航,张红梅,任博,等.基于改进LSTM模型的航空安全预测方法研究[J].系统工程与电子技术202244(2):569-576.

10
于洪霞,李兴.一种基于MLP神经网络的大额损失飞行事故预测模型[J].上海电力学院学报201632(5):504-506.

11
Santhosh T V Gopika V Ghosh A K,et al.An approach for reliability prediction of instrumentation & control cables by artificial neural networks and Weibull theory for probabilistic safety assessment of NPPs[J].Reliability Engineering & System Sa-fety2018170(4):31-44.

12
Arnaldo V R M Comendador V F Perez S L,et al.Prediction of aircraft safety incidents using Bayesian inference and hierarchical structures[J].Safety Science2018104(6):216-230.

13
Bauranov A Rakas J.Bayesian network model of aviation safety:impact of new communication technologies on mid-air collisions[J].Reliability Engineering & System Safety2023243(3):1-15.

14
李大伟,徐浩军,胡良谋,等.基于支持向量机的飞行事故率预测模型[J].数学的实践与认识200939(8):124-128.

15
梁文娟,李雪艳.基于ARIMA、LS-SVM和BP神经网络组合模型的航空运输飞行事故征候预测[J].安全与环境工程201825(1):130-136.

16
任博,岳珠峰,司勇,等.基于随机森林的航空安全因果预测新方法[J].系统工程与电子技术202345(3):762-768.

17
Zhang X G Mahadevan S.Ensemble machine learning models for aviation incident risk prediction[J].Decision Support Systems2019116(11):48-63.

18
凤四海,李枣,贺元骅.基于灰色关联法的飞机火灾事故统计分析与启示[J].安全与环境工程201724(3):138-143,149.

19
王衍洋,曹义华.民航安全指数结果分析与预测[J].北京航空航天大学学报201137(10):1223-1227.

20
甘旭升,端木京顺,王青.航空装备事故的灰色时序组合预测模型[J].中国安全科学学报201222(4):32-37.

21
陈农田,张宏钰,曹玉宽.基于灰色马尔科夫理论的进近着陆不安全事件预测[J].数学的实践与认识202050(4):306-314.

22
李延梅.一种改进的遗传算法及应用[D].广州:华南理工大学,2012.

23
中国民用航空局航空安全办公室.中国民航航空安全报告[R].北京:中国民用航空局,2016.

文章导航

/

[an error occurred while processing this directive]