[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
信息科学与工程

基于深度学习的输电线路目标检测

  • 刘艳梅 , 1 ,
  • 陈鑫顺 1 ,
  • 陈震 2 ,
  • 孙改生 2
展开
  • 1. 沈阳航空航天大学 自动化学院,沈阳 110136
  • 2. 国网辽宁省电力有限公司 应急抢修中心,沈阳 110021

刘艳梅(1974-),女,吉林长岭人,副教授,博士,主要研究方向:模式识别与智能系统,E-mail:

收稿日期: 2024-02-29

  网络出版日期: 2024-05-29

基金资助

教育部春晖计划(HZKY20220431)

国网辽宁省电力有限公司科技项目(SGLNYJ00 QXJS2200005)

Transmission line target detection based on deep learning

  • Yanmei LIU , 1 ,
  • Xinshun CHEN 1 ,
  • Zhen CHEN 2 ,
  • Gaisheng SUN 2
Expand
  • 1. College of Automation,Shenyang Aerospace University,Shenyang 110136,China
  • 2. Emergency Repair Center,State Grid Liaoning Electric Power Co. ,Ltd. ,Shenyang 110021,China

Received date: 2024-02-29

  Online published: 2024-05-29

摘要

针对目前基于深度学习的输电线路目标检测存在的小目标特征提取能力较差、易出现误检漏检、检测精度较低、检测速度较慢等问题,提出了一种基于改进深度学习神经网络模型YOLOv7的目标检测方法。首先使用MobileNetV2网络作为YOLOv7的特征提取部分,实现模型的轻量化处理;其次引入注意力(coordinate attention,CA)机制和空洞金字塔池化(atrous spatial pyramid pooling,ASPP)模块来提高模型的精度和感知能力;最后利用建立的输电线路障碍物数据集来训练改进的YOLOv7网络模型,并与原有YOLOv7网络模型进行对比。结果表明,算法在准确率、召回率上显著提升,可满足复杂场景下的输电线路故障检测,更利于模型的嵌入式系统硬件实现。

本文引用格式

刘艳梅 , 陈鑫顺 , 陈震 , 孙改生 . 基于深度学习的输电线路目标检测[J]. 沈阳航空航天大学学报, 2024 , 41(2) : 68 -75 . DOI: 10.3969/j.issn.2095-1248.2024.02.008

Abstract

Aiming at the current target detection methods based on deep learning for transmission line,the feature extraction ability is poor for small target,easy to misdetection leakage detection,detection accuracy is low, detection speed is slow.A transmission line target detection method was proposed based on an improved neural network model YOLOv7.Firstly,the MobileNetV2 network was used as the feature extraction part of YOLOv7 to achieve lightweight processing of the model.Secondly,the CA mechanism and ASPP module were introduced to improve the accuracy and perception of the model.Finally,the self-drawn transmission line obstacle data set was used for training improved YOLOv7 network and compared with the original YOLOv7 model.The results show that the algorithm proposed has significantly improved the accuracy and recall rate,which meets the fault detection in complex scenarios and is more conducive to model deployment of mobile devices and embedded systems.

[an error occurred while processing this directive]
1
周冬阳,王彦海,刘晓亮.基于机器学习的多目标输电线路智能化监测方法设计研究[J/OL].电力科学与技术学报:1-10.(2023-07-31)[2024-02-26].

2
刘德帅,李勇军,罗得表.基于无人机技术的输电线路检测和故障定位方法[J].无线电工程202353(10):2431-2438.

3
龙珊珊,信瑞山.基于人工智能图像识别的输电线路巡检研究[J].电子测量技术202346(6):116-121.

4
杨利波,杨嘉妮,贺学敏.基于YOLO目标检测算法的输电线路检测[J].电力信息与通信技术202220(8):99-105.

5
张峰,郭锐,程志勇,等.基于主元梯度直方图的输电线路障碍物检测[J].计算机工程与应用201652(15):254-259,265.

6
朱衍欢.巡线机器人视觉检测方法研究[D].哈尔滨:哈尔滨工业大学,2017.

7
陈荣保,唐大为,盛雨婷,等.数字图像在输电线路检测中的应用[J].传感器与微系统201938(9):150-152.

8
蔡晓斌,刘荣海,杨发,等.基于机器人视觉识别的防振锤智能运维研究[J].云南电力技术202048(4):2-6.

9
田云龙,郭媛.基于边缘计算的输电线路异常缺陷特征检测方法[J].企业科技与发展202323(11):67-70.

10
曾瑶韵.输电线路带电作业机器人视觉检测算法的研究[D].长沙:长沙理工大学,2018.

11
吴迪.智能巡检机器人视觉检测与定位方法研究[D].沈阳:东北大学,2020.

12
徐光达.基于YOLOv5的输电线路异物检测算法研究[D].福州:福建工程学院,2023.

13
王明.基于深度学习的输电线路异物检测算法研究[D].南京:南京信息工程大学,2023.

14
王彧.基于YOLOv7的输电线路防振锤识别及缺陷检测[D].哈尔滨:东北农业大学,2023.

15
Sandler M Howard A Zhu M L,et al.MobileNetV2:inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:4510-4520.

16
Hou Q B Zhou D Q Feng J S.Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Nashville:IEEE,2021:13708-13717.

17
Chen L C Papandreou G Kokkinos I,et al.DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence201840(4):834-848.

文章导航

/

[an error occurred while processing this directive]